Chapter 7: Moving Beyond Linearity

+» Polynomial regression. Add powers of a predictor, e.g. x4, x3, to a
simple linear model.

+~ Step functions. Range is divided into K distinct regions.

+ Regression splines. A mixture of the two above. Range of X divided
into K regions and then fit with polynomials and joined smoothly at
knots.

+ Smoothing splines. Similar to regression splines but involve using a
smoothness penalty.

+~ Local regression. Similar to splines except regions may overlap.

+» Generalized additive models. Extend methods above using multiple
predictors.



Polynomial Regression

+ The traditional of changing a linear model, y; = B, + B.x; + €;, is to
add powers of x;, €.9. y; = o + B1x; + Box? ++- +L4x% + €.
+ This last equation is a polynomial of degree d.

+~ After using least squares to estimate the regression coefficients we

can make predictions and put a +2s.e interval around those
predictions.

« For a particular value of x, xq, let II = (1,x,x5,+-,x2), then f(x,) =

(73, and Var(f(xy)) = I1S1l,, where S is the variance/covariance matrix
of .



Polynomial Regression

Degree-4 Polynomial
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The wage data on the left shows
a fourth order polynomial fit to
wages as a function of age. The
dashed lines are 95% confidence
intervals.

300
I

250

200
|

Wage
150
0.10
|

The right figure shows the logistic
regression function fit with a fourth 8 -
order polynomial to predict the
probability of earning a wage > 8
$250,000.
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Since there are only 79 high earners
the confidence interval on the logistic
regression results are wide.




Step Functions

+ Create K cutpoints, ¢, ¢,, ..,C,x and then use these to generate K+1
variables,

Co(X) = I(X < cy),
Cxk(X) = 1(cx < X)

+~ The indicator variable, I(), is 1 if the condition is true and 0
otherwise.

+ The regression model is then
Vi = Bo + 1C1(x;) ++- +PxC (x;) + €
+ C, is replaced by B, in this equation.



Step Functions

These step functions have
limited utility for capturing
the early increase in wages.

Perhaps it would do better if
the knot position could be
estimated.
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Basis Functions

» Polynomial and step function regression are special cases of basis
functions. That is functions that are pre-selected to use in linear
models, e.g. y; = By + B1b1(x;) +++ +Bx bk (x;) + €;-

+ In the case of polynomial regression, b;(x;) = x;, for piecewise
constant functions, b;(x;) = I(¢; < x; < ¢j41)

» Next, we examine another basis function, regression splines.



Regression Splines

+» For instance, we could also do a piecewise, polynomial regression,
where we have cutpoints or knots. In each interval we fit a, say,
cubic polynomial, y; = By + B1x; + Boxf + B3xi + €.

+~ If there was only a single knot at ¢, then the model would be,
_\Bo1 + B11x; + Baaxi + Baaxi + € if x; <c

y. — i "
l Boz + BizXi + Boaxi + Bazxi + € ifx; = ¢ Plecawise Cublc

+» This function fit to the wage data shows
a discontinuity at the knot. Even with the
eight degrees of freedom used to make
these estimates.
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Regression Splines

Continuous Piecewise Cubic
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To make the splines continuous at the knot this
figure adds the constraint,

Bor + B11€  + Porc® + B31c® = Pog + Brac  + Pazc® + Pasc’
at x=c¢, which is 50 in the figure above.

A cubic spline will have 4+K degrees of
freedom.
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To make the knot smooth we next
set the first and second derivative at
the know to be equal, e.g.

Bi1 + 2B21¢ + 3P31¢% = Pig + 2P55¢ + 3B3,c7
251+ 6f31C = 2[B,,+ 6f3,C



Spline Basis Functions

+ A degree-d spline is a piecewise degree-d polynomial with
continuity up to the d-1th derivative.

+ A cubic spline with K knots can be modelled with basis functions
as, yi = Po + P1b1(x;) ++ +Pr43br43(x;) + €
+» One set of basis functions for the cubic splines are, b,(x)= x, x?,
and x3. Then add one truncated power function for each knot,
h(x,§) = (x — §)3i= {(x —¢)° Jx=>4

0 otherwise

where ¢ is a knot. By adding these terms there will be a
discontinuity in the third derivative only.

+ Thus, we would do linear regression on a model with an intercept
and K+3 predictors, X, X2, X3, h(x,&,) ...h(x, &) and hence K+4
degrees of freedom.



Natural Cubic Spline

+ The cubic spline can have very high variance at the boundaries. A
natural spline is a

regression spline with an 2= e il GBI SHIG
additional boundary ' ' — Cubic Spline
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Choosing Knots

» Unlike FLAM the location of knots are not adaptively chosen.
Usually, the number of degrees of freedom are chosen first.

- Knots may the be placed at uniform intervals or uniform
quantiles of data.

» Cross-validation can also be used to chose the best number of

degrees of freedom.

- With many predictors

it may be easiest to
just set the degrees of
freedom to a constant
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Splines vs polynomials

+» A 15t order polynomial
vS. a cubic spline with 15
degrees of freedom.

+» The high order features,

e.g. x1°, make the
pehavior of the
polynomial unpredictable
especially at the
poundary.
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Smoothing Splines

» A regression function, g(x;), may be made sufficiently complex that
the RSS is close to 0 or actually zero, but this will result in
overfitting and a model which is very jumpy since it is chasing
every observation.

« It is typically preferable to have a small RSS and a model which is
smooth.

+ A smoothing spline accomplishes by minimizing the following
objective function, X .(y; — g(x,)?+A [ g"(t)*dt

+» This function has the standard RSS loss function and a penalty
function which integrates the regression functions second
derivative over the predictors range.

+ The second derivative measures the amount by which the slope is
changing. The second derivative of a straight line is O.



Smoothing Splines

+ As A approaches 0 we just get the least squares estimate.

+ AS 1 - o g become a straight line (since the second derivative of a
linear function is zero).
+ The function that minimizes the smoothing spline objective function

IS a piecewise cubic polynomial with knots at unique values x;,...,x,
with continuous first and second derivatives and straight lines at

the end regions, e.g a natural cubic spline.
+~ It is not the same as the standard natural spline but shrunken due
to A >0.



Choosing the Smoothing Parameter

+ A controls the smoothness and hence the effective degrees of
freedom (df,). When A=0 then df, can be n and at 1 = «, df, =2.

+ Although the smoothing spline has n-parameters and hence n
degrees of freedom they are heavily constrained and shrunken.
Thus, the effective degrees of freedom reflect the flexibility of the
model.

+ High df, mean more flexibility (low bias, high variance), low df, just
the opposite.
+ We can find the df, from the equation, g, = S,y, where g, is the

solution to the smoothing spline objective function, e.g. the fitted
values at the training points xy,..., X,,. Then df; = tr(s;).

+» Computational details: §; = N(NTN + 12,)7 !, where N is the n xn
matrix of basis functions for the n-observations and {2y}, =

J N/ (N (©) dt.



Choosing the Smoothing Parameter

+ We can choose the best A using cross-validation.

+ There is a simple calculation for a leave-one-out cross validation
error which is,

—i 2 i—d2(x)]?
RSSerD) = it (i = 8570 = By [2oae]”

where gf{")(xi) is the fitted (leaving
observation-i out) function evaluated
at x..

« This cross-validation can be estimated

from just a single fit of the data as suggested by the right hand
side of the equation above.



Example: age-specific fecundity, cubic spline, natural spline

library(splines)

# Generate cubic splines at three knots,df=3+K=6 (since the default is no intercept)

fit<-1Im(Fecundity~bs (Age ,knots =c (25 ,40 ,60),degree=3),data=fec.age)#bs is the B-spline
function

age.grid<- seqg(from=12,to=72)

pred=predict (fit ,newdata =list (Age =age.grid), se=T)

# Plot the raw data, spline fit +- 2s.e.'s

plot (fec.age$Age, fec.ageSFecundity, col="gray",xlab="AGE", ylab="FECUNDITY")

lines (age.grid,predS$fit, lwd =2)

lines (age.grid, predSfit+2*preds$se, 1ty ="dashed")
lines (age.grid, predS$fit-2*pred$se, lty ="dashed")

# Let R choose the knots
attr (bs (fec.age$Age,df=6), "knots")
25% 50% 75%
19 28 37
# Natural Spline
fit2<- Im(Fecundity~ns (Age,df=4),data=fec.age)
#ns is the natural spline function. Default is
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# no intercept so there are df-1 knots B
pred2<- predict (fit2,newdata=list (Age=age.grid), se=T)
lines (age.grid, pred2$fit,col="red", lwd=2)
= fop s T P
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Compare Natural Spline to Evolutionary Model
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CO;_.; with mean fecundity and fitted model and confidence intervals.

From Mueller et al. (2007) Biogerontology 8: 147-161. The natural spline model has 4
degrees of freedom and the evolutionary model has 4 parameters or 4 degrees of
freedom also.



Example: age-specific tecundity, smoothing spline

# Smoothing Spline

plot (fec.age$Age, fec.ageSFecundity, cex=0.5,col="darkgrey", xlab="AGE", ylab="FECUNDITY")
title("Smoothing Spline")

# First we specify that there will 61 degrees if freedom in "fit3“, corresponding to 61 unique ages.
fit3<- smooth.spline (fec.ageS$SAge, fec.ageSFecundity,df=61, cv=TRUE)

# "fitd" will use the leave-one-out CV error to choose the best A

fitd<- smooth.spline (fec.age$Age, fec.age$Fecundity, cv=TRUE) Smoothing Spline

fit4Sdf #effective degrees of freedom

[1] 37.4882 — B1DF
lines (fit3,col="red", lwd=2) e

lines (fit4,col="blue", lwd=2)

legend ("topright", legend=c("61 DF","37.5 DF"),
col=c ("red", "blue"),lty=1, lwd=2, cex=0.8)

# The CV error should be smaller in “fit4” compared
# to “fit3”

> fitd$cv.crit

[1] 392.5167

> fit3Scv.crit
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D_
[T
[1] 392.4659
# This difference is probably attributable to
# different random folds used in fit3 and fitd4.
D_
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Local Regression

+ Fit linear models only
to target points using
nearby observations.

Local Regression
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FIGURE 7.9. Local regression illustrated on some simulated data, where the
blue curve represents f(x) from which the data were generated, and the light
orange curve corresponds to the local regression estimate f(:t:) The orange colored
points are local to the target point xo, represented by the orange wertical line.
The yellow bell-shape superimposed on the plot indicates weights assigned to each
point, decreasing to zero with distance from the target point. The fit f(:co) at xo 1s

obtained by fitting a weighted linear regression (orange line segment), and using
the fitted value at o (orange solid dot) as the estimate f(xo).



Local Regression

+~ Algorithm
1. Gather the fraction s=k/n of training points whose x; are closest
to X,.
2. Assign a weight K;;=K(x;, x,) to each point in this neighborhood,
so that the point furthest from x, has a weight zero, and the
closest has the highest weight. All but these k nearest neighbors
get weight zero.
3. Fit a weighted least squares regression of the y; on the x; using
the aforementioned weights, by finding 8, and g;that minimize,

i=1 Kio(vi = Bo — B1x)?.

4. The fitted value at x, is given by, f(xy) = B, + B1x0



Local Regression

+ The local regression with more degrees of freedom tends to be
jumpy.
+ Local regression in more than 3 or 4 dimensions will quickly run

out of data as we saw with the curse of
dimensionality.

Local Linear Regression

—— Spanis 0.2 (16.4 Degrees of Freedom)
= Spanis 0.7 (5.3 Degrees of Freedom)
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_Example: lL.ocal Regression

# Local Regression
plot (fec.age$Age, fec.ageSFecundity, cex=0.5,col="darkgrey", x1lab="AGE", ylab="FECUNDITY")
title ("Local Regression")
fit5<- loess (fec.ageSFecundity~fec.ageS$SAge, span=.2,data=fec.age)# span controls the proportion of points
fit6<- loess (fec.ageSFecundity~fec.age$SAge,span=.5,data=fec.age)# to be used in the local regression
# degree defaults to 2 a quadratic fit
# The predict function doesn't work as expected. This may be
# due to the large number of replicate observations at each age Local Regression
# The next line identifies the first row in fec.age that each of

# the unique ages appear, e.g. uages<- unique (fec.age$Age)

unique.locations<- sapply(l:length (uages), function (x)
which (fec.age[,1l]==uages|[x]) [1])

lines (uages, fit5sfitted[unique.locations],
col="red", lwd =2)

lines (uages, fit6$fitted[unique.locations],
col="blue",lwd =2)

legend ("topright", legend=c ("s=0.2","s=0.5"),
col=c ("red", "blue"),lty=1, lwd=2, cex=0.8)
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fit5$fitted is a vector with the predicted fecundity
of all 87,149 observations in the same order as the
original data file - fec.age.
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Generalized Additive Models

+ The methods considered to this point can now be used to model
responses with multiple predictors.

+ The generalized additive model (GAM) adds a different functional
form for each predictor, y; = B + X7_, fi(xij) + €

+ For the wage data we can include two quantitative variables, year
and age, and one qualitative variable, education.
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Fitting Addittve Models

- This material comes from the Elements book so we will change notation.

» The general model is, Y = a + 2?=1fj(Xj) + €. Each function will be modelled as

a penalized residual sum of squares (PRSS), as we used with smoothing splines.

- We seek to minimize,
2

N p
PRSS(a, f1, . fp) = 2 yi—a— zfj(xij) +
i=1 Jj=1

J

» A cubic spline for each f; will be a minimizer to this objective function with knots

at the unique values of x;;, i=1,...,N.

» TO guarantee a unique solution we require Zliv=1fj(xij) = 0 for all j (the
functions average 0 over all data). In addition, the matrix of input values (x;)

must have full column rank, e.g. no columns can not be linear combinations of
each other.

i A f fi'@p*dy
=1



Fitting Addittve Models Algorithm

» 1. Initialize: @ = <%y, f; = 0,vi, .
2. Cycle: j=1, 2, ....p,..., 1, 2, .., p,...,
fj « 5 [{yi —a— Zk;tj fk(xik)}llvl
fi<fi —% i1 fi (xij)
until the functions fj change less than a prespecified threshold.

= S; means fit to a smoothing cubic spline to the residuals between
{}. This smoothing spline is the new estimate, f;. After this is

done the functions are updated before the next function is fit to
the residuals.
+ The technique is called “backfitting”.

+ The second step in 2 should not be needed since the smoothing
spline should have a zero mean. But machine rounding can cause
slippage, so this is an advisable numerical technique.



GAM pros and cons

+ Allow for flexible, non-linear fits.

+ Each predictor can be examined for its effects on the outcome
holding the other predictors fixed.

+ Although predictors must be additive, interactions can be added as
a separate additive factor.

+» Can be thought of as a compromise between a linear model and a
fully non-parametric model - like random forests.
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