
Chapter 7: Moving Beyond Linearity

 Polynomial regression. Add powers of a predictor, e.g. x2, x3, to a 
simple linear model. 

 Step functions. Range is divided into K distinct regions.
 Regression splines. A mixture of the two above. Range of X divided 

into K regions and then fit with polynomials and joined smoothly at 
knots.

 Smoothing splines. Similar to regression splines but involve using a 
smoothness penalty.

 Local regression. Similar to splines except regions may overlap.
 Generalized additive models. Extend methods above using multiple 

predictors.



Polynomial Regression

 The traditional of changing a linear model, 𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖 + 𝜖𝜖𝑖𝑖, is to 
add powers of xi, e.g. 𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖 + 𝛽𝛽2𝑥𝑥𝑖𝑖2 +��� +𝛽𝛽𝑑𝑑𝑥𝑥𝑖𝑖𝑑𝑑 + 𝜖𝜖𝑖𝑖.

 This last equation is a polynomial of degree d.
 After using least squares to estimate the regression coefficients we 

can make predictions and put a ±2𝑠𝑠. 𝑒𝑒 interval around those 
predictions.

 For a particular value of x, x0, let 𝑙𝑙0𝑇𝑇 = 1, 𝑥𝑥0, 𝑥𝑥02,���, 𝑥𝑥𝑜𝑜𝑑𝑑 , then 𝑓𝑓 𝑥𝑥0 =
𝑙𝑙0𝑇𝑇𝛽̂𝛽,𝑎𝑎𝑎𝑎𝑎𝑎 𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓 𝑥𝑥0 ) = 𝑙𝑙0𝑇𝑇𝑆̂𝑆𝑙𝑙0, where 𝑆̂𝑆 is the variance/covariance matrix 
of 𝛽̂𝛽.



Polynomial Regression

The wage data on the left shows
a fourth order polynomial fit to
wages as a function of age. The
dashed lines are 95% confidence
intervals.

The right figure shows the logistic 
regression function fit with a fourth
order polynomial to predict the 
probability of earning a wage >
$250,000.

Since there are only 79 high earners
the confidence interval on the logistic
regression results are wide.



Step Functions

 Create K cutpoints, c1, c2, ..,cK and then use these to generate K+1 
variables,

𝐶𝐶0 𝑋𝑋 = 𝐼𝐼 𝑋𝑋 < 𝑐𝑐1 ,
𝐶𝐶𝑗𝑗 𝑋𝑋 = 𝐼𝐼 𝑐𝑐𝑗𝑗 ≤ 𝑋𝑋 < 𝑐𝑐𝑗𝑗+1
𝐶𝐶𝐾𝐾 𝑋𝑋 = 𝐼𝐼 𝑐𝑐𝐾𝐾 ≤ 𝑋𝑋

 The indicator variable, I(), is 1 if the condition is true and 0 
otherwise.

 The regression model is then
𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝐶𝐶1 𝑥𝑥𝑖𝑖 +��� +𝛽𝛽𝐾𝐾𝐶𝐶𝐾𝐾 𝑥𝑥𝑖𝑖 + 𝜖𝜖𝑖𝑖

 C0 is replaced by β0 in this equation.



Step Functions

These step functions have
limited utility for capturing
the early increase in wages.

Perhaps it would do better if
the knot position could be
estimated.

The same wage data with fitted step functions and 
95% confidence intervals



Basis Functions

 Polynomial and step function regression are special cases of basis 
functions. That is functions that are pre-selected to use in linear 
models, e.g. 𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑏𝑏1 𝑥𝑥𝑖𝑖 +��� +𝛽𝛽𝐾𝐾𝑏𝑏𝐾𝐾 𝑥𝑥𝑖𝑖 + 𝜖𝜖𝑖𝑖.

 In the case of polynomial regression, 𝑏𝑏𝑗𝑗 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖
𝑗𝑗, for piecewise 

constant functions, 𝑏𝑏𝑗𝑗 𝑥𝑥𝑖𝑖 = 𝐼𝐼(𝑐𝑐𝑗𝑗 ≤ 𝑥𝑥𝑖𝑖 < 𝑐𝑐𝑗𝑗+1)
 Next, we examine another basis function, regression splines.



Regression Splines
 For instance, we could also do a piecewise, polynomial regression, 

where we have cutpoints or knots. In each interval we fit a, say, 
cubic polynomial, 𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖 + 𝛽𝛽2𝑥𝑥𝑖𝑖2 + 𝛽𝛽3𝑥𝑥𝑖𝑖3 + 𝜖𝜖𝑖𝑖.

 If there was only a single knot at c, then the model would be,

𝑦𝑦𝑖𝑖 = �
𝛽𝛽01 + 𝛽𝛽11𝑥𝑥𝑖𝑖 + 𝛽𝛽21𝑥𝑥𝑖𝑖2 + 𝛽𝛽31𝑥𝑥𝑖𝑖3 + 𝜖𝜖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 < 𝑐𝑐
𝛽𝛽02 + 𝛽𝛽12𝑥𝑥𝑖𝑖 + 𝛽𝛽22𝑥𝑥𝑖𝑖2 + 𝛽𝛽32𝑥𝑥𝑖𝑖3 + 𝜖𝜖𝑖𝑖 𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖 ≥ 𝑐𝑐

.

 This function fit to the wage data shows
a discontinuity at the knot. Even with the
eight degrees of freedom used to make 
these estimates.



Regression Splines

To make the splines continuous at the knot this 
figure adds the constraint, 
𝛽𝛽01 + 𝛽𝛽11𝑐𝑐 + 𝛽𝛽21𝑐𝑐2 + 𝛽𝛽31𝑐𝑐3 = 𝛽𝛽02 + 𝛽𝛽12𝑐𝑐 + 𝛽𝛽22𝑐𝑐2 + 𝛽𝛽33𝑐𝑐3

at x=c, which is 50 in the figure above.

To make the knot smooth we next
set the first and second derivative at
the know to be equal, e.g.
𝛽𝛽11 + 2𝛽𝛽21𝑐𝑐 + 3𝛽𝛽31𝑐𝑐2 = 𝛽𝛽12 + 2𝛽𝛽22𝑐𝑐 + 3𝛽𝛽32𝑐𝑐2

2𝛽𝛽21+ 6𝛽𝛽31𝑐𝑐 = 2𝛽𝛽22+ 6𝛽𝛽32𝑐𝑐

A cubic spline will have 4+K degrees of
freedom.



Spline Basis Functions

 A degree-d spline is a piecewise degree-d polynomial with 
continuity up to the d-1th derivative.

 A cubic spline with K knots can be modelled with basis functions 
as, 𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑏𝑏1 𝑥𝑥𝑖𝑖 +��� +𝛽𝛽𝐾𝐾+3𝑏𝑏𝐾𝐾+3 𝑥𝑥𝑖𝑖 + 𝜖𝜖𝑖𝑖

 One set of basis functions for the cubic splines are, bi(x)= x, x2, 
and x3. Then add one truncated power function for each knot,

ℎ 𝑥𝑥, 𝜉𝜉 = (𝑥𝑥 − 𝜉𝜉)+3= �(𝑥𝑥 − 𝜉𝜉)3 𝑖𝑖𝑖𝑖 𝑥𝑥 > 𝜉𝜉
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

where 𝜉𝜉 is a knot. By adding these terms there will be a 
discontinuity in the third derivative only.

 Thus, we would do linear regression on a model with an intercept 
and K+3 predictors, X, X2, X3, ℎ 𝑥𝑥, 𝜉𝜉1 …ℎ 𝑥𝑥, 𝜉𝜉𝐾𝐾 and hence K+4 
degrees of freedom.



Natural Cubic Spline
 The cubic spline can have very high variance at the boundaries. A 

natural spline is a 
regression spline with an 
additional boundary 
constraint. At the boundary
when x is less than the first 
knot or greater than the 
last knot the function is 
linear.



Choosing Knots

 Unlike FLAM the location of knots are not adaptively chosen. 
Usually, the number of degrees of freedom are chosen first.

 Knots may the be placed at uniform intervals or uniform 
quantiles of data.

 Cross-validation can also be used to chose the best number of 
degrees of freedom.

 With many predictors
it may be easiest to 
just set the degrees of freedom for all variables to some 
freedom to a constant
number.

 On the  right is the 
wage data. 10 fold CV.



Splines vs polynomials

 A 15th order polynomial 
vs. a cubic spline with 15 
degrees of freedom.

 The high order features,
e.g. x15, make the
behavior of the 
polynomial unpredictable
especially at the
boundary.



Smoothing Splines
 A regression function, g(xi), may be made sufficiently complex that 

the RSS is close to 0 or actually zero, but this will result in 
overfitting and a model which is very jumpy since it is chasing 
every observation.

 It is typically preferable to have a small RSS and a model which is 
smooth.

 A smoothing spline accomplishes by minimizing the following 
objective function, ∑𝑖𝑖=1𝑛𝑛 (𝑦𝑦𝑖𝑖 − 𝑔𝑔 𝑥𝑥𝑖𝑖 )2+𝜆𝜆 ∫𝑔𝑔𝑔𝑔(𝑡𝑡)2𝑑𝑑𝑑𝑑

 This function has the standard RSS loss function and a penalty 
function which integrates the regression functions second 
derivative over the predictors range.

 The second derivative measures the amount by which the slope is 
changing. The second derivative of a straight line is 0.



Smoothing Splines

 As λ approaches 0 we just get the least squares estimate.
 As 𝜆𝜆 → ∞ g become a straight line (since the second derivative of a 

linear function is zero).
 The function that minimizes the smoothing spline objective function 

is a piecewise cubic polynomial with knots at unique values x1,…,xn
with continuous first and second derivatives and straight lines at 
the end regions, e.g a natural cubic spline.

 It is not the same as the standard natural spline but shrunken due 
to λ >0.



Choosing the Smoothing Parameter

 λ controls the smoothness and hence the effective degrees of 
freedom (dfλ). When λ=0 then dfλ can be n and at 𝜆𝜆 = ∞, dfλ =2.

 Although the smoothing spline has n-parameters and hence n
degrees of freedom they are heavily constrained and shrunken. 
Thus, the effective degrees of freedom reflect the flexibility of the 
model.

 High dfλ mean more flexibility (low bias, high variance), low dfλ just 
the opposite.

 We can find the dfλ from the equation, �𝑔𝑔𝜆𝜆 = 𝑺𝑺𝜆𝜆𝒚𝒚, where �𝑔𝑔𝜆𝜆 is the 
solution to the smoothing spline objective function, e.g. the fitted 
values at the training points x1,…, xn. Then 𝑑𝑑𝑑𝑑𝜆𝜆 = 𝑡𝑡𝑡𝑡(𝑺𝑺𝜆𝜆). 

 Computational details: 𝑺𝑺𝜆𝜆 = 𝑵𝑵 𝑵𝑵𝑇𝑇𝑵𝑵 + 𝜆𝜆𝜴𝜴𝑁𝑁
−1, where N is the 𝑛𝑛 × 𝑛𝑛

matrix of basis functions for the n-observations and 𝜴𝜴𝑁𝑁 𝑗𝑗𝑗𝑗 =
∫𝑁𝑁𝑗𝑗′′(𝑡𝑡)𝑁𝑁𝑘𝑘′′(𝑡𝑡)𝑑𝑑𝑑𝑑. 



Choosing the Smoothing Parameter
 We can choose the best λ using cross-validation.
 There is a simple calculation for a leave-one-out cross validation 

error which is,

𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐 𝜆𝜆 = ∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 − �𝑔𝑔𝜆𝜆
−𝑖𝑖 (𝑥𝑥𝑖𝑖)

2
= ∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖− �𝑔𝑔𝜆𝜆(𝑥𝑥𝑖𝑖)

1− 𝑺𝑺𝜆𝜆 𝑖𝑖𝑖𝑖

2
,

where �𝑔𝑔𝜆𝜆
(−𝑖𝑖)(𝑥𝑥𝑖𝑖) is the fitted (leaving 

observation-i out) function evaluated 
at xi.

 This cross-validation can be estimated 
from just a single fit of the data as suggested by the right hand
side of the equation above.



Example: age-specific fecundity, cubic spline, natural spline
library(splines)
# Generate cubic splines at three knots,df=3+K=6 (since the default is no intercept)
fit<-lm(Fecundity~bs(Age ,knots =c(25 ,40 ,60),degree=3),data=fec.age)#bs is the B-spline 

function
age.grid<- seq(from=12,to=72)
pred=predict (fit ,newdata =list(Age =age.grid),se=T)
# Plot the raw data, spline fit +- 2s.e.'s
plot(fec.age$Age,fec.age$Fecundity,col="gray",xlab="AGE",ylab="FECUNDITY")
lines(age.grid,pred$fit,lwd =2)
lines(age.grid,pred$fit+2*pred$se,lty ="dashed")
lines(age.grid,pred$fit-2*pred$se,lty ="dashed")

# Let R choose the knots
attr(bs(fec.age$Age,df=6),"knots")
25% 50% 75% 
19  28  37 
# Natural Spline
fit2<- lm(Fecundity~ns(Age,df=4),data=fec.age)
#ns is the natural spline function. Default is
# no intercept so there are df-1 knots
pred2<- predict(fit2,newdata=list(Age=age.grid),se=T)
lines(age.grid,pred2$fit,col="red",lwd=2)

RAW DATA: N=87,149



Compare Natural Spline to Evolutionary Model

CO1-3 with mean fecundity and fitted model and confidence intervals.
From Mueller et al. (2007) Biogerontology 8: 147-161. The natural spline model has 4
degrees of freedom and the evolutionary model has 4 parameters or 4 degrees of 
freedom also.



Example: age-specific fecundity, smoothing spline

# Smoothing Spline
plot(fec.age$Age,fec.age$Fecundity,cex=0.5,col="darkgrey",xlab="AGE",ylab="FECUNDITY")
title("Smoothing Spline")
# First we specify that there will 61 degrees if freedom in "fit3“, corresponding to 61 unique ages.
fit3<- smooth.spline(fec.age$Age,fec.age$Fecundity,df=61,cv=TRUE)
# "fit4" will use the leave-one-out CV error to choose the best λ
fit4<- smooth.spline(fec.age$Age,fec.age$Fecundity,cv=TRUE)
fit4$df #effective degrees of freedom
[1] 37.4882
lines(fit3,col="red",lwd=2)
lines(fit4,col="blue",lwd=2)
legend("topright",legend=c("61 DF","37.5 DF"),
col=c("red","blue"),lty=1,lwd=2,cex=0.8)
# The CV error should be smaller in “fit4” compared
# to “fit3”
> fit4$cv.crit
[1] 392.5167
> fit3$cv.crit
[1] 392.4659
# This difference is probably attributable to
# different random folds used in fit3 and fit4.



Local Regression
 Fit linear models only

to target points using
nearby observations.



Local Regression

 Algorithm
1. Gather the fraction s=k/n of training points whose xi are closest 
to x0.
2. Assign a weight Ki0=K(xi, x0) to each point in this neighborhood, 
so that the point furthest from x0 has a weight zero, and the 
closest has the highest weight. All but these k nearest neighbors 
get weight zero.
3. Fit a weighted least squares regression of the yi on the xi using 
the aforementioned weights, by finding 𝛽̂𝛽0 and 𝛽̂𝛽1that minimize, 
∑𝑖𝑖=1𝑛𝑛 𝐾𝐾𝑖𝑖𝑖 𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − 𝛽𝛽1𝑥𝑥𝑖𝑖 2.
4. The fitted value at x0 is given by, 𝑓𝑓 𝑥𝑥0 = 𝛽̂𝛽0 + 𝛽̂𝛽1𝑥𝑥0



Local Regression

 The local regression with more degrees of freedom tends to be 
jumpy.

 Local regression in more than 3 or 4 dimensions will quickly run 
out of data as we saw with the curse of
dimensionality.



Example: Local Regression
# Local Regression
plot(fec.age$Age,fec.age$Fecundity,cex=0.5,col="darkgrey",xlab="AGE",ylab="FECUNDITY")
title("Local Regression")
fit5<- loess(fec.age$Fecundity~fec.age$Age,span=.2,data=fec.age)# span controls the proportion of points
fit6<- loess(fec.age$Fecundity~fec.age$Age,span=.5,data=fec.age)# to be used in the local regression

# degree defaults to 2 a quadratic fit
# The predict function doesn't work as expected. This may be
# due to the large number of replicate observations at each age
# The next line identifies the first row in fec.age that each of
# the unique ages appear, e.g. uages<- unique(fec.age$Age)
unique.locations<- sapply(1:length(uages),function(x) 
which(fec.age[,1]==uages[x])[1])

lines(uages,fit5$fitted[unique.locations],
col="red",lwd =2)

lines(uages,fit6$fitted[unique.locations],
col="blue",lwd =2)

legend("topright",legend=c("s=0.2","s=0.5"),
col=c("red","blue"),lty=1,lwd=2,cex=0.8)

fit5$fitted is a vector with the predicted fecundity
of all 87,149 observations in the same order as the
original data file – fec.age. 



Generalized Additive Models
 The methods considered to this point can now be used to model 

responses with multiple predictors. 
 The generalized additive model (GAM) adds a different functional 

form for each predictor, 𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + ∑𝑗𝑗=1
𝑝𝑝 𝑓𝑓𝑗𝑗 𝑥𝑥𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖

 For the wage data we can include two quantitative variables, year 
and age, and one qualitative variable, education. 

The first two functions
are natural splines and
the last function is
a step function.



Fitting Additive Models
 This material comes from the Elements book so we will change notation. 

 The general model is, 𝑌𝑌 = 𝛼𝛼 + ∑𝑗𝑗=1
𝑝𝑝 𝑓𝑓𝑗𝑗 𝑋𝑋𝑗𝑗 + 𝜖𝜖. Each function will be modelled as 

a penalized residual sum of squares (PRSS), as we used with smoothing splines.
 We seek to minimize,

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝛼𝛼,𝑓𝑓1, … ,𝑓𝑓𝑝𝑝 = �
𝑖𝑖=1

𝑁𝑁

𝑦𝑦𝑖𝑖 − 𝛼𝛼 −�
𝑗𝑗=1

𝑝𝑝

𝑓𝑓𝑗𝑗(𝑥𝑥𝑖𝑖𝑖𝑖)

2

+ �
𝑗𝑗=1

𝑝𝑝

𝜆𝜆𝑗𝑗 �𝑓𝑓𝑗𝑗′′(𝑡𝑡𝑗𝑗)2𝑑𝑑𝑡𝑡𝑗𝑗

 A cubic spline for each fj will be a minimizer to this objective function with knots 
at the unique values of xij, i=1,…,N.

 To guarantee a unique solution we require ∑𝑖𝑖=1𝑁𝑁 𝑓𝑓𝑗𝑗 𝑥𝑥𝑖𝑖𝑖𝑖 = 0 for all j (the 
functions average 0 over all data). In addition, the matrix of input values (xij) 
must have full column rank, e.g. no columns can not be linear combinations of 
each other.



Fitting Additive Models Algorithm
 1. Initialize: �𝛼𝛼 = 1

𝑁𝑁
∑1𝑁𝑁 𝑦𝑦𝑖𝑖 ,𝑓𝑓𝑗𝑗 ≡ 0,∀𝑖𝑖, 𝑗𝑗.

2. Cycle: j=1, 2, …,p,…, 1, 2, .., p,…,
𝑓𝑓𝑗𝑗 ← 𝑆𝑆𝑗𝑗 𝑦𝑦𝑖𝑖 − �𝛼𝛼 − ∑𝑘𝑘≠𝑗𝑗 𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖𝑖𝑖)

1
𝑁𝑁

𝑓𝑓𝑗𝑗 ← 𝑓𝑓𝑗𝑗 −
1
𝑁𝑁
∑𝑖𝑖=1𝑁𝑁 𝑓𝑓𝑗𝑗 𝑥𝑥𝑖𝑖𝑖𝑖

until the functions 𝑓𝑓𝑗𝑗 change less than a prespecified threshold.
 Sj means fit to a smoothing cubic spline to the residuals between 

{}. This smoothing spline is the new estimate, 𝑓𝑓𝑗𝑗.  After this is 
done the  functions are updated before the next function is fit to 
the residuals. 

 The technique is called “backfitting”.
 The second step in 2 should not be needed since the smoothing 

spline should have a zero mean. But machine rounding can cause 
slippage, so this is an advisable numerical technique.



GAM pros and cons

 Allow for flexible, non-linear fits.
 Each predictor can be examined for its effects on the outcome 

holding the other predictors fixed.
 Although predictors must be additive, interactions can be added as 

a separate additive factor.
 Can be thought of as a compromise between a linear model and a 

fully non-parametric model – like random forests.
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